Ubicomp’18: Detecting Eating Episodes with an Ear-Mounted Sensor

Paper to appear in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (Ubicomp’18).

Abstract: In this paper, we propose Auracle, a wearable earpiece that can automatically recognize eating behavior. More specifically, in free-living conditions, we can recognize when and for how long a person is eating. Using an off-the-shelf contact microphone placed behind the ear, Auracle captures the sound of a person chewing as it passes through the bone and tissue of the head. This audio data is then processed by a custom analog/digital circuit board. To ensure reliable (yet comfortable) contact between microphone and skin, all hardware components are incorporated into a 3D-printed behind-the-head framework. We collected field data with 14 participants for 32 hours in free-living conditions and additional eating data with 10 participants for 2 hours in a laboratory setting. We achieved accuracy exceeding 92.8% and F1 score exceeding 77.5% for eating detection. Moreover, Auracle successfully detected 20-24 eating episodes (depending on the metrics) out of 26 in free-living conditions. We demonstrate that our custom device could sense, process, and classify audio data in real time. Additionally, we estimate Auracle can last 28.1 hours with a 110 mAh battery while communicating its observations of eating behavior to a smartphone over Bluetooth.

PDF (7046K)


Shengjie Bi, Tao Wang, Nicole Tobias, Josephine Nordrum, Shang Wang, George Halvorsen, Sougata Sen, Ronald Peterson, Kofi Odame, Kelly Caine, Ryan Halter, Jacob Sorber, and David Kotz. Auracle: Detecting Eating Episodes with an Ear-Mounted Sensor. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT) (Ubicomp), 2(3), September 2018. DOI 10.1145/3264902.